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1 Summary

We accelerated recurrent neural network (RNN) training on multi-core CPUs using Halide. Our implementation
used data parallelism and parallel matrix multiplication operations (Multi-threads + SIMD Vectorization), and
achieved approx. 39x speedup against sequential training of the RNN in Halide on a 61 core Xeon Phi CPU.
We also compared our optimized Halide implementation with a optimized NumPy implementation of the same
algorithm with batching on the Xeon Phi, and report our results.

2 Background

A recurrent neural network trains on input containing sequences of data, as it learns about time dependent
relations between different parts of the input. For example, if we send as input a sequence of words, i.e. a
sentence, an RNN can learn about the relations between different words, and hence learn rules of English
grammar such as relationships between verbs and adverbs, etc.

Fig. 1. Recurrent Neural Network Architecture

2.1 RNN Architecture

A basic RNN contains an input layer, hidden layer and output layer, containing nx, nh and ny nodes respectively,
as shown in Figure 1. A data point xi contains nx features at every time-step t, sent to the RNN. The connections
between the input and hidden nodes are parametrized by a weight matrix Wxh of size nx × nh. The weights in
the hidden layer represent recurrent connections, where connections from hidden layer at time-step t to those
at time-step t + 1 (i.e. ht to ht+1) are parametrized by a weight matrix Whh of size nh × nh. Finally, weights
from the hidden layer to the output layer at every time-step are parametrized by a weight matrix Why, of size
nh × ny. Note. We have decided not to include the bias layers bh and by for the simplicity of this assignment.

There are two steps involved in training an RNN:

1. Forward Propagation:
In this step, in general, given an input data point x = x1,x2, . . . ,xT of T time-steps, the RNN calculates
the output y = y1,y2, . . . ,yT of T time-steps (this can vary for different applications). All the updates are
propagated from h1 to hT , sequentially, as highlighted by black arrows in an unrolled version of the RNN
in Figure 2.

2. Backpropagation Through Time:
In this step, the RNN updates the weight matrices using gradient descent. For this, gradients from time-step
T have to be propagated all the way back to time-step 1, as highlighted by the back-ward black arrows in
Figure 3.
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Fig. 2. Forward Propagation in an RNN

Fig. 3. Backpropagation Through Time in an RNN

The equations for the each time-step t of the RNNs are as follows:
The loss is defined as

E =
∑
t

(ŷt − yt)
2

where ŷt is the output generated by the RNN at time-step t for input xt, and yt is the expected ground truth
output for xt.

The forward propagation equations for our RNN implementation are:

ht = tanh (Wxhxt + Whhht−1)

ŷt = tanh (Whyht)

The backward propagation through time propagates the gradients of the loss w.r.t. each of the weight
matrices learnt by the RNN. These gradient equations are:
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∂ŷt
∂(Whyht)

∂(Whyht)

∂ht
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where “+” indicates immediate derivative.
The calculation of the gradient w.r.t. Wxh is similar to that of gradient w.r.t. Whh, except that we have

∂ht

∂Wxh
=

∂ tanh (xtWxh + ht−1Whh)

∂Wxh
= xt(1 − h2

t )

2.2 Challenges

There are 2 important aspects to training an RNN, which are computationally expensive:

1. The forward and backward propagation steps are inherently sequential. In forward propagation, information
is propagated from time-step 1 all the way to time-step T . In backward propagation, gradients from time-step
T are propagated to all previous time-steps, T − 1, T − 2, . . . , 1.
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2. In back-propagation step, gradients are computed from future time-steps and current time-steps. That is,
at time-step t, gradients from time-steps t + 1, t + 2, . . . , T are added to the gradient at time-step t. This
requires that we store the sequential updates at every time-step from the forward propagation step, and
hence has a high memory footprint.

Accelerating each of these steps can decrease the training time for RNNs, which is desirable. Both of these
steps can benefit from parallelization.

2.3 Workload

As described above, there are inherent sequential dependencies between consecutive time-steps, and throughout
the network. However, we can use data parallelism to speedup the network training (both steps), so that forward
propagation produces outputs for multiple inputs at a time, and the backward-propagation uses all these outputs
to propagate gradients from time-step T to 1. This is called mini-batch training of neural networks.

Since these steps involve several matrix multiplications, there is spatial locality in the problem. It is better
to perform matrix multiplication on chunks of matrices at a time, so that the cache is hot with the concerned
set of rows and columns required in the multiplication, and there are fewer cache misses. Further, SIMD can
speed up these multiplications so that more elements are multiplied in parallel.

2.4 Problem Setup

For the final results for our project, we use the CIFAR-10 image dataset to train an RNN to rotate an image
by 10 degrees anti-clockwise. Figure 4 shows a description of the set of inputs and outputs.

Fig. 4. Training an RNN to learn image rotation by 10 degrees anti-clockwise

As shown in the figure, Figure 4, our data parallel input now has 3 dimensions, time-steps T , batch size
(multiple images stacked up together), and nx, the number of features in 1 input image at time-step t. For our
application, we took grayscale images from the dataset, and flattened them into a 1x1024 vector, so that every
row shown in the matrix as 1024 elements and corresponds to one image. If we take a cross-section of the 3D
matrix along the time axis, at time-step t, the input is 1× 1024 image result of rotating the image at time-step
(t− 1), 10 degrees anti-clockwise. The corresponding outputs are shifted accordingly, so that yt = xt+1, i.e. the
output at time-step t is the image at time-step t (xt) rotated 10 degrees anti-clockwise. For actual performance
testing, we have decided to truncate the image feature vector to 1000 instead so as to avoid testing matrix
multiplications of powers of 2 which leads to cache evictions in diagonal blocks.

2.5 Initial Analysis

Initial analysis of the problem reveals several methods for parallelism. The first method is to perform data par-
allelism by batching the inputs and targets and utilize the parallelism by parallelizing over matrix multiplication
operations as well as element-wise matrix multiplication. The amount of parallelism using this method depends
heavily on the size of the input and size of batch.
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Another method is to perform parallelization using the diagram. Notice that the arrows into the hidden
layers for both forward propagation and backward propagation can be potential target for parallelization since
they do not depend of each other. Also notice the arrows out of the hidden layers can also be potential target
for parallelization if the hidden layers are computed already for that step. The amount of parallelization in this
depends on the time step T .

3 Approach

We implemented the RNN to train quickly on a multi-core CPU. Specifically, we tested our Halide implemen-
tation and NumPy implementation on the latedays cluster, on the Intel Xeon Phi CPU, which has 61 cores
and 512-bit SIMD vector registers.

3.1 Improving the BPTT algorithm

We found a “WildML” blog tutorial[1] that presented an O(N2) algorithm to implement the back-propagation
through time step of training an RNN.

Fig. 5. O(N2) approach for implementing BPTT

Figure 5 shows representation of 1 iteration of the O(N2) approach for BPTT, where gradients from time-
step T are propagated all the way back up to time-step 1, before calculating the gradients at time-step (T − 1).
This is quadratic in the number of time-steps and hence slow.

Fig. 6. O(N) approach for implementing BPTT

We optimized BPTT and implemented an O(N) algorithm linear in the number of time-steps. As shown in
Figure 6, this implementation calculates the gradients at time-step t, and these are then stored and re-used at
time-step (t − 1). Therefore, now we don’t go all the way back to the first time-step in every iteration. This
optimization is useful for both serial and parallel implementations of the RNN.

3.2 Technologies

We developed an RNN implementation in 3 different ways:

1. Theano: This is a neural network library commonly used in Python. Theano is an API that compiles the
code setup of an RNN dynamically and generates code for forward and backward propagation steps for
training the RNN.

2. NumPy: This is a library that is useful for implementing fast linear algebra operations in Python (using
BLAS). We wrote both the forward and backward propagation steps from scratch in NumPy.
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3. Halide: This is a domain specific language used with C++ for fast image processing operations. Since images
can be represented as matrices, Halide is useful for fast matrix operations. We therefore developed an RNN
from scratch in Halide, and optimized our implementation.

We had some issues setting up Theano on latedays because the assembler could not recognize some of
the optimized assembled instructions (same issue happened when compiling Halide code using -O3 flag.). Since
on a 2 core Intel i5 processor, our NumPy implementation was slightly faster than the Theano framework
implementation for a fixed set of parameters, we benchmarked our Halide implementation against the NumPy
implementation.

Take note that both the NumPy and Theano framework uses the batching technique and same batching
parameters in order for it to be a fair comparison against Halide. Additionally, both NumPy and Theano are
specifically set to use float32 instead of the default float64 so as to match the Halide implementation of using
a 4 byte float.

Furthermore, take note that all the implementations uses exactly the same set of training data and ini-
tial weights generated as an image in MATLAB. We have verified from the floating numbers that all three
implementations obtain the same results except for small floating point differences.

We went through many steps in optimizing our serial Halide implementation. While we discuss these opti-
mizations below, we present results in the next section and describe what worked well there.

1. Changing the batch size, i.e. number of images used in data parallel training per epoch. Having matrix-
matrix multiplication is faster than a lot of small matrix-vector multiplication due to spatial locality and
temporal locality.

2. Tiling of for loops in matrix multiplication, to improve spatial locality and decrease cache capacity misses.

3. SIMD Vectorization : Since the code for matrix multiplication is the same for all elements of the matrix,
using SIMD to process many elements in parallel can improve the training speed of RNN.

4. parallel() halide optimization: This optimization uses OpenMP threads to process different rows/columns
of the matrix in parallel.

5. AOT (Ahead of Time) compilation: Halide by default uses JIT (Just in Time) which is slow, as it dynamically
re-compiles different sections of the code every time it processes that section. AOT avoids this by pre-
compiling the code into re-usable binary files, so that we can just run the code with those binary files, and
hence decrease program run-time.

4 Results

We present below a set of graphs explaining how these optimizations helped in speeding up our Halide imple-
mentation. For testing our RNN, we used a batch size of 1000, nx, nh, ny = 1000, and T = 10 time-steps, unless
mentioned otherwise. The benchmark utilized for testing is average time for a single epoch in seconds relative to
NumPy’s implementation on latedays. Note that since NumPy uses BLAS for matrix operations, it has access
to SIMD vector instructions on Xeno Phi which gives it up to 16x speed up.

4.1 Theano v/s NumPy on Intel Core i5 (2 cores)

Fig. 7. Theano v/s NumPy on Intel Core i5 (2 cores)
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As discussed previously and shown in Figure 7, our NumPy implementation of RNN from scratch is compet-
itive with the RNN implemented using Theano on a 2-core CPU. An interesting note is that for much smaller
data, the NumPy approach can reach 2x speedup compared to the Theano approach, primarily because of the
overhead of calling a compiled Theano function.

4.2 Best Performance of Halide v/s NumPy on Latedays Xeon Phi

Fig. 8. Best Performance of Halide v/s NumPy on Latedays Xeon Phi

As shown in Figure 8, our best optimized version of Halide RNN is about 3 times slower than our NumPy
implementation on a 61 core Xeon CPU, when we train the RNN for 100 epochs. Note that NumPy utilizes
BLAS which contributes to highly optimized matrix multiplication and parallalism via SIMD optimizations.

4.3 Training time per epoch decreases with increasing batch size

Fig. 9. Training time per epoch decreases with increasing batch size

We experimented with the batch size parameter for training the RNN, using batch sizes of 100 up to 1000,
incrementally increasing by 100. The graph presented in Figure 9 shows the normalized time for training. For a
particular batch size b, we trained the RNN with b× T dataset size, as we just sliced the original dataset along
the batch size dimension. Each point in the graph is obtained by averaging the training time for 10 epochs for
that batch size. To account for the fact that we train the network with different dataset sizes, we normalize the
training times for each batch size by the dataset size.

As shown in the graph, increasing the batch size improves the training performance, and we believe that
this is because larger matrices provide more data for the algorithm to parallelize and also increase spatial and
temporal locality, which in turn can contribute to an increase in math operations, hence greater arithmetic
intensity. Since the graph times are normalized, this graph also correctly shows that for a fixed dataset size,
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using a smaller batch size for training increases the average training time per epoch, as now there are many
small matrix multiplications. For a larger batch size, more images are stacked up together in a larger input
matrix, which reduces the number of cache misses when we read many different smaller matrices.

We have also experimented with a variety of workloads such as dimensions of 32 for small workloads and
4096 for large workloads. For smaller workloads, we believe the effects of JIT compilation dominate the training
time in Halide execution, preventing the application from gaining much speedup. For larger workloads, we only
found some improvements in the speedup ratio between Numpy and our Halide implementation. However, we
were limited by the amount of time one epoch will take and also limited by the size of generated training data
in terms of feeding the training data to both NumPy and Halide. (Our current pipeline for NumPy does not
support reading of images of large sizes, such as 16384 × 16384.)

4.4 Tiling works well with Vectorization

Fig. 10. Tiling works well with Vectorization

We ran 8 tests for testing all the different combinations of 3 Halide optimization techniques, namely, tiling,
parallel using multiple OpenMP threads and SIMD vectorization for 5 epochs each. All these tests were
performed with Ahead-of-time (AOT) compilation instead of Just-in-time compilation in Halide. The code with
all these 3 techniques combined is also the one that generated the best performance against NumPy. Please note
that there may be some variation in timing due to a small number of epochs in testing. Hence, the 3.7 seconds
in this diagram for the best performing code does not contradict the 2.9 seconds performance of the same code
in the previous diagram.

For matrix multiplication, it is useful to optimize for spatial locality by tiling, so that when we multiply
matrices A and B, instead of reading 1 row for A and 1 column (many rows, hence many cache evictions/misses)
for B, we divide the matrix into smaller chunks/tiles. Multiplying tiles at a time improves the spatial locality
for matrix B. When we used tiling of 64 rows and 16 columns, we observed a significant speed up compared
to the serial Halide implementation, and a positive speed up when we used tiling with SIMD vectorization.
SIMD vectorization works well with tiling as we optimize for spatial locality in cache, and process 16 elements
in parallel, reducing training time. These results are presented in the graph in Figure 10. Note that we utilized
16 for columns because this matched with the 512-bit SIMD of Xeon Phi and utilized 64 rows because this value
generated the best performance.

One interesting observation is the behavior of tiling with Halide’s parallel() optimization. As shown in the
graph, tiling with parallel() performs worse than parallel() optimization (alone) of input rows compared to
the serial Halide implementation. One hypothesis to explain this ambiguity is that there is both low spatial and
low temporal locality when tiling is combined with parallel(). Halide implements parallel() using OpenMP
threads, parallelizing over for loops. However, parallelizing across tiles implies that there can be scenario where
thread tht processes a tile indexed by rows 0 : 64, columns 0 : 16 and after this tht processes the tile of rows
640 : 724, columns 0 : 16, which is very far away from the previous tile. This can cause issues of spatial locality
as the same thread can swap in and out different rows of a matrix, and temporal locality as the same row will be
read in and processed different at different times by different threads. This can therefore increase the program
run time of training the RNN.
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4.5 Vectorization gives large speedup on Xeon Phi

Fig. 11. Vectorization gives large speedup on Xeon Phi

SIMD vectorization of 16 elements for matrix multiplication is beneficial with all optimizations possible for
this code, since the code for multiplication is same for all elements. We observe this effect in the graph shown
in Figure 11.

Notice that our best speed up is only about 8x times which half of theoretical maximum which is 16x.
However this might be because the whole RNN training involved many different steps of matrix operations as
well as elementwise matrix operations. Hence, there is some latency in switching from one operation to the next
operation. Also, we use a non-linear function, tanh, which does not vectorize well as stated on the Halide docs.

4.6 Halide parallel() using OpenMP threads works better with vectorization than with tiling

Fig. 12. Halide parallel() using OpenMP threads works better with vectorization than with tiling

As discussed previously, the Halide parallel() optimization doesn’t work well with tiling. However, this
gives a good speedup against a serial implementation, as it parallelizes the multiplication across different rows.
Further, it works well with SIMD vectorization because now each thread processes 16 elements in parallel for a
given row, decreasing the running time further.
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However, note that this is still nowhere near the optimum of 61x speed up. There are 2 possible reasons
for this. One reason is that with vectorization and tiling, there isn’t much computation for each thread to
perform, compared to the amount of overhead for the thread to execute that work, which essentially implies
low arithmetic intensity for each thread. Another reason is that Halide might have just put a simple #pragma

openmp parallel for without adding specific scheduling parameters in to the compiled code. The evidence
for this is that we have performed a compile to c on the Halide Func and examined the resulting code and
observed this issue.

4.7 Specialization of non-matrix multiplication operations improves speedup slightly

Fig. 13. Specialization of non-matrix multiplication operations improves speedup slightly

We have also performed other additional optimizations on top of the 3 main optimizations mentioned earlier
on. We have attempted to specialize the non-matrix multiplication operations by using a different set of schedul-
ing parameters by parallelizing the rows instead in order to exploit the speed-up seen in Halide parallel()

without tiling for only basic element-wise arithmetic operations. However, since most of the execution time de-
pends on the matrix multiplication operations, this only provided marginal speedup in training time per epoch
as shown in Figure 13.

4.8 AOT Halide v/s JIT Halide on Latedays Xeon Phi, AOT implementation is faster

Fig. 14. AOT Halide v/s JIT Halide on Latedays Xeon Phi, AOT implementation is faster

We also compared the performance of Ahead-of-time(AOT) compilation v/s Just-in-time(JIT) compilation
because we developed the RNN code using JIT before moving on to AOT to speed up the performance. The
reason we switched to AOT is because we need to re-compile intermediate functions and run the code at every
single step throughout both forward and backward propagation when the code could just be compiled once
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before the file runs. This essentially broke the Halide interface because we need to obtain the raw buffer

pointer from the image, but it allowed us to achieve a 3x speed up as shown in Figure 14. Note that we still use
JIT in some part of the AOT code, mainly to save the intermediate variables.

4.9 Other optimizations

We have also explored the option of loop fusion either within the Halide interface or outside the Halide interface.
We can identify parallelism in the partial calculations of the hidden layers using just the inputs, calculations of
the output layers using the hidden layer in parallel and calculations of error with respect to the output layers
in parallel from our DAG diagram of the neural network. However, we realize performing parallelism over these
domains is less ideal because this gives up the cache locality effect from being able to immediately compute
the necessary output at a certain time-step. We have observed an almost 2x speed up when we performed loop
fusion of all these calculations instead of separating them out into various steps and parallelizing them across
the steps.

The loop fusion within the Halide interface is shown by creating a pure definition using a single long
expression instead of creating a two stage pure definition and update definition in Halide. This also provided
minor speedup in our Halide implementation, primarily because these expressions are inlined into the compiled
code and it manage to exploit cache locality.

Additionally, we also initially focused on image feature size of 1024 and batch size of 1024 instead of 1000.
However, we discovered that 1024 is a power of 2 and hence matrix multiplication using this as a dimension
results in cache conflict misses on diagonal blocks as evident from 15-213 cache lab. As a result, there is a
significant increase in per epoch speed as the dimensions increase from 1000 to 1024 (0.5 seconds increase per
epoch).

There are also a number of small hacks utilized by using pointers in Halide to point to images in an attempt
to avoid recopying them for multiple usage through different time step.

4.10 Deeper analysis by Workload breakdown

1. [Initialize Forward Propagation] 0.05%
2. [Calculate ht] 22.16%
3. [Calculate ŷt] 5.78%
4. [Saving all intermediate variables] 22.55%
5. [Calculating loss] 0.79%
6. [Initialize Back Propagation] 0.16%
7. [Calculating ∂E

∂(Whyht)
]0.54%

8. [Calculating ∂E
∂(Wxhxt+Whhht−1)

] 23.33%

9. [Gradient Updates] 24.60%
10. [Gradient Descent] 0.06%

We have done a breakdown of the training time per epoch in each step in training the RNN. We observe
that most of the execution time in training is primarily at the matrix multiplication steps (Step 2,8,9) instead of
element-wise matrix multiplication. We have also conducted a test using an array of Image pointers to decrease
the time for saving all the intermediate variables (Step 4) but that resulted in poorer cache locality for the
Gradient Update steps and hence resulted in similar timing for epoch training time (using an array of 2D Image
pointer instead a single 3D Image).

4.11 Choice of Machine

For our work, we believe that CPU is still a good choice for speedup because we do not need to be bandwidth-
bound by the PCI interconnection and we are still able to utilize multi-threading and vectorization to increase
parallelism for matrix multiplication. However, it would be interesting to observe the GPU performance on
matrix multiplication since GPU supports more SIMD units and have cudaThreads which has lower overhead
of setting up. However, there might not be sufficient work to distribute among the cudaThreads to effectively
use the GPU resource for this task.

Division of Work

Sent via email to course staff.
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